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We determine the stability of a nonequilibrium interface between two coexisting 
solid phases in the presence of a weak external field. Starting at the coarse- 
grained (Cahn-Hilliard) level, we use the method of matched asymptotics to 
derive the macroscopic interracial dynamics. We then show that the external 
field leads to an instability due to flux along the interface, in contrast with the 
more common Mullins Sekerka type instability, which involves fluxes normal to 
the interface. We also find that the external field produces an important 
modification of the Gibbs-Thomson relation. With these results, we perform the 
linear stability analysis for an approximately flat interface. If the field is tangent 
to the interface, the modification of the Gibbs-Thomson relation is important 
and the interface is stabilized. If the field is normal to the interface, the surface 
flux is important, and the effect can be stabilizing or destabilizing, but the orion- 
rational dependence is opposite what would be obtained if the Mullins-Sekerka 
instability dominates. Numerical simulations are performed to study the effect of 
the surface current and are in agreement with our analytical results. 

KEY WORDS: Interfacial dynamics; stability analysis; nonequilibrium steady 
states. 

1. I N T R O D U C T I O N  

The dynamics of nonequilibrium interfaces is a determining factor in many 
pattern-forming processes. Familiar examples include directional solidifica- 
tion of binary alloys (l-3) and viscous fingering in Hele-Shaw cells. (4) Impor- 
tant progress has been made in the characterization of the steady-state 
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patterns and in understanding how.these patterns are seleced. (1-4) Likewise, 
the dynamics of the evolution from the initial state also contain interesting 
and important features. For example, the stability and shape of the 
steady-state finger in flow in a rectangular Hele-Shaw cell does not depend 
on the difference in the viscosities of the two fluids (in the small-surface- 
tension limit). If, however, the viscosities are equal, the system generally 
does not evolve toward the single-finger steady state. (5 7) In these problems 
progress has followed from a description of the interracial dynamics. (s 12) In 
particular, if one has a microscopic or coarse-grained description, a first 
step is often the derivation and analysis of the associated interface 
equations.(13-17) 

In this paper we study the dynamics of an interface between two 
coexisting solid phases. The system is assumed to be far from criticality and 
driven out of equilibrium by a weak external field which, through the 
chosen boundary conditions, induces a flux. We start at the coarse-grained 
leVel using the Cahn-Hilliard equation with an additional flux induced by 
the external field. This model has been used to study both bulk proper- 
ties (18-21) and the interfacial dynamics (22-26) of driven diffusive systems 
(DDS)(27 29) and phase ordering dynamics in the presence of a field. (3~ 
Using the method of matched asymptotic expansions,/15 17) we derive 
a macroscopic description of the interfacial dynamics from the bulk 
Cahn-Hilliard equation. For such a description, we need a Gibbs- 
Thomson relation which relates the deviation of the order parameter near an 
interface from its coexistence or steady-state value to the local orientation 
and curvature of the interface. In the absence of a field, the shift in the 
order parameter is the same on both sides of the interface. We find that the 
external field produces a novel asymmetry in this shift on the two sides. 

For the macroscopic description we also need an expression for the 
normal velocity of the interface. We show that due to the external field, 
there is an additional mechanism operative which does not usually arise in 
the expression for the normal velocity and which can lead to instability. In 
the more common case of a Mullins-Sekerka instability ~9) a small bump on 
an otherwise flat interface will create a larger gradient in the relevant quan- 
tity (e.g., temperature, pressure, or concentration) in front of itself. If the 
restoring force (such as supplied by surface tension) is not sufficiently 
large, the bump will grow and the interface is unstable. In our case, the 
mechanism is not due to such gradients, but rather is due to an imbalance 
of flux along the interface. The modifications of the Gibbs-Thomson 
relation and the equation for the normal velocity produce important 
qualitative changes in the interracial dynamics. Neither of these effects has 
been included in previous analyses. (22 24) 

Armed with the macroscopic description, we perform a linear stability 
analysis for a planar interface. We determine the dispersion relation and 
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find that, at small wavenumbers k, a perturbation h k of the interfacial posi- 
tion behaves as I/zk/hel "~k 2 if the field is normal to the interface and 
hk/hk ~ - k  3/2 if the field is tangent to the interface. 

More specifically, we find that the surface flux is important if the field 
in normal to the interface, and it has a stabilizing or destabilizing effect 
depending on the direction of the field. As will be discussed, the directional 
dependence is opposite that which would be expected from the Mullins- 
Sekerka instability. (24~ The directional dependence when the field is normal 
to the average interface has been observed in simulations of phase ordering 
dynamics (31'32~ and fingering in driven diffusive systems. ~33) 

If the external field is parallel to the interface, the modification of the 
Gibbs-Thomson relation is the most important effect. The external field 
provides a new relaxation mechanism and stabilizes the interface. Monte 
Carlo simulations of Leung eta/ .  (34) suggest that, for the lattice model, the 
roughening transition may be raised to (the nonequilibrium) T C by an 
external parallel field. Although we use a continuum description, the 
additional interfacial stabilization in our model could be related to the 
raising of the roughening temperature in the associated lattice system. 

The organization of the remainder of this paper is as follows. In 
Section 2 we discuss the basic dynamical equations and the planar steady- 
state solutions. In Section 3 we present the equations describing the macro- 
scopic interracial dynamics. In the Appendix we derive these equations 
using the method of matched asymptotic expansions. With the macroscopic 
description, in Section 4 we consider the linear stability of a planar inter- 
face. In Section 5 we study the effect of the enhanced surface flux on the 
stability of the interface via simulation of the coarse-grained bulk equa- 
tions. The orientational dependence of the instability is in agreement with 
our predictions. Section 6 is reserved for concluding remarks. 

2. T H E  M O D E L  A N D  S T E A D Y - S T A T E  S O L U T I O N S  

In this section we discuss a model for a two-phase system in an 
external field. Let c(r, t) be the local order parameter at point r and time t. 
The order parameter c is positive in one phase, negative in the other, and 
the interface is at c = O. We take for the equation determining c(r, t), 

ac 
a t  = v2# - E-Wr(c)  (2.1) 

where E is the external field and cr(c) is the order-parameter-dependent 
mobil i ty)  The local chemical potential # is assumed to be of the form 

3We choose time to have dimensions of (length) 2 and chemical potential /~ to have 
dimensions of concentration c, so the susceptibility Z = (Ol*/~c)- l is dimensionless. 
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# B -  ~ 2~72c, where #B does not contain any gradients and Go is a measure 
of the interracial width. For the "standard model," #8 = - c  + c 3. For E = 0 
we recover the Cahn-Hilliard equation (35) used in the study of phase 
ordering dynamics with conserved order parameter. (36~ 

To interpret the E dependence we arrive at Eq. (2.1) in two steps. The 
conserved order parameter c(r, t) obeys the continuity equation 

0c(r, t) 
~t 

- - + V  .j(r, t) -- 0 (2.2) 

where j is the order parameter current, which we take to be given by 

j = - V #  + a(c) E (2.3) 

The simplest form of the order-parameter-dependent mobility consistent 
with Ising-like symmetry is a(c)= 1 -  ac 2, where a is a constant. More 
generally, the mobility is large at the interface where c 2 is small and 
suppressed in the bulk phases. The order parameter dependence leads to 
the additional term in Eq. (2.1) and is important because the leading E 
dependence in the current drops out of the continuity equation, 
Eq. (2.2). ~3~ In principle, the kinetic coefficient multiplying V# should have 
the same order parameter dependence. For the nonequilibrium steady 
state, this is unimportant relative to the coupling to the external field and 
is ignored here. (However, this term would be important if we were con- 
sidering the equilibrium profile for a system with closed boundary condi- 
tions, i.e., walls, rather than open boundary conditions.) 

If we assume the "standard model," # = - c  + C 3 -  ~2V2c and a(c)= 
1 - c  2, we can obtain, for sufficiently small E, stationary solutions of 
Eq.(2.1) corresponding to planar interfaces with constant normal 
flux. (19'24~ Let fi be the normal to the interface pointing into the "plus" 
phase and let u be the signed distance to the interface (u > 0 in the "plus" 
domain). The order parameter profile of the stationary solution is 

(2.4) 

where the bulk saturation value c~(e) and interfacial width ~e depend on 
e ~ E ' f i  as 

c~(e)= l + v/-2 E . f i :  l + x/2e 

~e 30 
Coo 

(2.5) 
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This analysis can be repeated for more general forms of the chemical 
potential #=#B--~2V2c corresponding to a double-well free energy, 
although the solution can no longer be written in a simple form. We find 
that, for small e, 

c~(e) ,.~ Gq -} Zfl~ E" ~ (2.6) 
2 

where Ceq ~-Coo(0  ) is the bulk concentration in zero field, 7, = (~#/~C)eq I is 
the zero-field susceptibility, and Q = -(Qa/gC)~q. The quantity 

f 
o o  

floQceq =- du[a(C0(b/)) -- rr(Gq) ] (2.7) 
- - o o  

where Co(U) is the zero-field planar profile, is a direct measure of the order- 
parameter dependence of the mobility, with flo being a microscopic length 
of order ~0. For the "standard model" we have Ceq = 1, Z = 1/2, Q = 2, and 
flo = x/~ ~o. The steady-state solution will be physically relevant only if it 
is stable against fluctuations in the bulk. This sets a lower (negative) bound 
on E- h, i.e., coo must be larger than the spinodal value Cspmodal ( = l/x/-3 for 
the "standard model"). In this paper we limit the discussion to small E so 
that co~ > Cspinodal. 

3. MACROSCOPIC DESCRIPTION OF 
INTERFACIAL DYNAMICS 

In this section we discuss the interfacial dynamics for small driving 
field at the macroscopic level. There are three ingredients: (i) the equation 
for the time evolution of the order parameter in the bulk, (ii) the analogue 
of the Gibbs-Thomson boundary condition, and (iii) an equation for the 
normal velocity of the interface. We show in the Appendix how to derive 
these ingredients in a systematic manner using the method of matched 
asymptotic expansions. (15 17) The essential feature of the derivation is an 
expansion in the ratio of the interracial width to macroscopic length scales, 
to be defined below, which are determined by the curvature and the exter- 
nal field. In this section we quote results to first order in the expansion. 

The first ingredient of the macroscopic description is the equation 
governing the order parameter in the bulk away from the interface, which 
becomes to leading order (22) 

Ogc 
- O = x  l[V26c+K'V~c] (3.1) 

~t 
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where the upper (lower) sign holds in the "plus" ("minus") phase, 
6c(r, t) =- c(r, t) -T Ceq, and K - zQE. Note that K ' is a macroscopic length 
scale related to the external field. (22'23) The corresponding current is 

J = - Z  ~[Vfc+K6c]  (3.2) 

The bulk dynamics is essentially an expansion of Eq. (2.1) around the zero- 
field equilibrium values. Note that to first order the quasistatic approxima- 
tion, ~6c/c3t = 0, holds in the bulk. 

The second ingredient is the Gibbs-Thomson boundary condition. 
This relation gives the value of the order parameter near a curved or 
otherwise perturbed interface and is used as the interracial boundary condi- 
tion for the order parameter in a macroscopic description of the interracial 
motion. (14'8) In the absence of a field, the Gibbs-Thomson boundary condi- 
tion arises from a statement of local equilibrium, and the order parameter 
near the interface is determined by local quantities such as the local 
curvature and the local surface tension. 

In the present situation the concept of local equilibrium is replaced by 
"local steady state." As shown in the Appendix, we may assume that, near 
the interface, structures with size on the order of the interfacial width will 
relax to their quasi stationary form on much smallar time scales than the 
time scales on which the position of the interface changes. In Section 2 we 
saw that the steady state of a planar interface depends on its orientation. 
The simplest assumption is that, for small distortions and external field, the 
effects of curvature and "tilt" are additive. As shown in the Appendix, this 
is indeed true to first order in the expansion. 

We find that the Gibbs-Thomson boundary condition for the limiting 
order parameter as the interface is approached from the "plus" and 
"minus" phases is 

Ceq 
6c+_ = Z/~ + = ~ -  do~,U _+ Gq2/?~ fi (3.3) 

where fi is the local normal to the interface defined as pointing into the 
"plus" phase, and u is the signed distance from the interface. The curvature 
oU = - V "  fi is defined as positive for a bump of the "plus" phase protrud- 
ing into the "minus" phase. The microscopic capilliary length is do = xF/c2~q 
and the zero-field surface tension is F =  4o 2 ~ du[~uCo(U)] 2, and flo is the 
microscopic length scale related to the c dependence of a as defined in Sec- 
tion 2. Both do and flo are order 4o. (In the "standard model" do = 4o x~ /3  

and flo = 4o x/~ = 3do.) 
The first term on the RHS of Eq. (3.3) is independent of the side 

from which the interface is approached and is simply the equilibrium 
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Gibbs-Thomson boundary condition indicating that the order parameter 
near the macroscopically sharp interface is shifted by an amount propor- 
tional to the curvature. The external field E produces an additional term 
which depends on whether the interface is approached from the "plus" or 
"minus" phase. As will be shown, the new term in the boundary condition 
leads to an additional stabilizing mechanism when the field is tangential to 
the unperturbed interface. This new mechanism dominates the stability in 
that case. 

The last ingredient is the expression for the normal velocity of the 
interface. We find that 

v = 2 ~ q  [ J " ] l +  f l o f ( K "  a) (3.4) 

where j ,  is the normal current and I - ] z =  ( - ) + -  (,)_ is the discontinuity 
across the interface (see footnote 3). The normal velocity v is defined as 
positive if the "minus" phase advances into the "plus" phase. Projecting 
Eq. (3.2) in the normal direction, we can rewrite Eq. (3.4) as 

1 1 
v -  [~ .6c ] ,+=-  ~0X(K" ~) (3.5) 

2ZCeq ZX 

where a o - f l o - d o  is taken to be positive, as it is in the "standard model" 

(ao = 2do = 402 ~/2/3 in the "standard model"). 
The first term on the RHS of Eq. (3.4) is the discontinuity of the 

normal current which will appear even without the field. The second term 
in Eq. (3.4) is not present if the mobility is independent of the order 
parameter (Q = 0). As shown in the Appendix, this additional term is due 
to the variation in the tangential current along the interface, OsJs, and 
arises from the increased mobility near the interface. In zero field, ~sJ, is 
higher order in the expansion, and, in the long-wavelength limit, is 
negligible relative to the discontinuity in the normal current. (37) We will 
show that the new mechanism represented by the second term of Eq. (3.4) 
determines the stability of the interface. 

The orientational dependence of the surface current contribution to 
the normal velocity, i.e., the second term in Eq. (3.4), is shown schemati- 
cally in Fig. 1. If E .  fi is positive, the enhanced surface transport tends to 
smooth out small perturbations and the interface is stabilized, as shown in 
Fig. la. On the other hand, if E .  fi is negative, as in Fig. lb, the enhanced 
surface transport will amplify small perturbations, and the interface is 
destabilized. This orientation dependence differs from that which would 
obtain in an appropriately driven system if the Mullins-Sekerka instability 
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v 

0 

Fig. 1. Schematic diagram showing the effect of the surface current on a perturbed interface 
oriented normal to the field. The c > 0 region is shaded and the field drives positive c to the 
right. The small black arrows indicate the direction of current along the interface. The large 
white arrows indicate the motion of the interface. (a) A stable interface with respect to the 
surface currents. Due to the surface current, small bumps are rapidly filled in. (b) An unstable 
interface with respect to the surface currents. For this orientation, the surface current amplifies 
small bumps. 

1.0 -:-~- ;~-- _~_-~_---~_-~__~-~- _ . . . . . . .  C(E) 
C(-E) 

0.0 E > 

-1.0 

50 100 150 200 
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Fig. 2. The concentration profile of a kink-antikink pair. This profile is obtained from the 
numerical simulations described in Section 5. Such pairs occur if periodic boundary conditions 
are imposed in the field direction. The asymptotic order parameter values c~ are defined in 
Eq. (2.5). (Due partly to the curvature effects discussed in Section 3, the asymptotic values are 
not precisely reached.) Note that the bulk is undercooled on both sides of the left-hand 
interface. This interface would be unstable to displacements if a Mullins-Sekerka-like 
instability dominated. 
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dominates/24) Consider, for example, Fig. 2, showing, in periodic boundary 
conditions, a kink-antikink pair. Notice that the left-hand interface 
separates undercooled bulks. One might expect the left-hand interface to 
exhibit a Mullins Sekerka instability while the right-hand interface is 
expected to be stable. However, the new surface current mechanism has a 
stabilizing effect on the left-hand interface and succeeds in destabilizing the 
right-hand one. 

2. LINEAR STABILITY ANALYSIS  

With the macroscopic description provided in the previous section, we 
can consider the linear response of a flat interface to small perturbations. 
We assume now that we have an interface which, unperturbed, has its 
normal in the fi direction. We assume that far away from the interface, the 
order parameter is given by _+ co,  where ca is the steady-state bulk value 
given by Eq. (2.5) and depends on E" ft. The interfacial dynamics is then 
given by Eqs. (3.1), (3.3), and (3.5). 

Let the position of the unperturbed interface be z = 0, with the "plus" 
phase occupying z > 0. The position of the perturbed interface is given by 
z(x, t ) = h e x p ( c o k t - i k x ) ,  where h is much smaller than k -1 and IKI 1 
A perturbation of wavenumber k will grow (decay) if 09 k has positive 
(negative) real part. To first order in h, the curvature S is - k 2 h  and the 
x component of the local normal is ux= ikh. Let 6c• = c ~ C e q .  We take a 
solution of the form 

6c+_ = 6C+ exp(cok t - ikx T- q+ z) +_ (c a - Ceq ) 

in "plus" and "minus" phases, respectively. The additional term co~- Ceq is 
due to the boundary condition far from the interface. The bulk dynamics 
[Eq. (3.1)] yields 

0 = - ( k Z - q 2 )  - (Kzq+_ -t-iKxk) (4.1) 

where Kz and Kx are the z and x components of K = zQE. To first order 
in h, the interracial boundary condition (3.3) becomes 

~C+ Ceq 2 iCeq . . . .  
- -dok h +--~-/JoAxKn (4.2) 

- 2 - -  

while the expression for the normal velocity, Eq. (3.5), yields 

2ZCeq(Okh = q+ 6C+ q- q_ 6C_  - CeqO~oKzkZh (4.3) 
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Note that if the field E is tangent to the interface (Kz = 0), the surface 
current contribution to the normal velocity is negligible in the linear 
analysis and field effects are only in the modifications of the Gibbs-  
Thomson boundary condition and the bulk equation. On the other hand, 
if E is normal to the interface (Kx = 0), the modification of the boundary 
condition is negligible in the linear analysis, and the field effects are due to 
the surface current and the modification of the bulk equation. 

Solving Eqs. (4.1)-(4.3) for c% gives 

K x f l O  
cox= - aoKz+ 2 q l _ K  +doq 1 (4.4) 

where q l =  (q+ +q_) /2 .  Solving Eq. (4.1) and taking the roots with the 
positive real part, we find 

/ K 2 \1/2 
q_+ =-~- (4.5) 

We consider specific cases. For  E = 0, we recover the usual zero-field 
result, q ~ = k  and cok=-dok3/(2Z).  (H'~3) Since our choice of boundary 
conditions far from the interface corresponds to zero undercooling in the 
bulk, the interface is stable to perturbations of all wavenumbers. If the field 
is normal to the interface (Kx = 0), Eq. (4.4) becomes 

k 2 
o~ = - ~ (aoKz + doql) (4.6) 

Note that there is a contribution to the dispersion relation independent of 
ql. Since q l  1 is the length scale on which bc decays into the bulk, the 
physical origin of this term is independent of bulk gradients. This is the 
contribution from the surface current, and we see that, consistent with the 
analysis of Section 3, it stabilizes the interface if K z > 0 and destabilizes the 
interface if Kz < 0. We first consider Kz > 0. The interface is linearly stable 
at all wavenumbers. In the limit of small k, ql ~- - K z  and Ok ~-- --Kzfiok2/ 
(2Z), where we have used e o + d o = f l o  . Note that the change in the 
asymptotic behavior, co k ~ - k  2 rather then (Dk~ - -k  3, indicates that the 
presence of the field strongly stabilizes the interface at long wavelengths 
(relative to the zero-field case). 

For  Kz < 0, whether the interface is linearly stable or unstable depends 
on the wavenumber of the perturbation. In the limit of small k, 
ql "~ -k2/Kz ,  so cog ~ %Kzk2/(2Z) is positive, and the interface is unstable. 
At large k, ql = k, and we approach the zero-field result, (o h = -dok3/(2Z), 
making the interface stable. The wavenumber at which the interface is 
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marginally stable ( o k = 0 )  is k =  [Kzl(eoflo) 1/2 do 1. Typically in the linear 
regime and into the nonlinear regime, one observes patterns with charac- 
teristic size given by the wavelength at which the interface is maximally 
unstable, i.e., where co k is maximized. (~'5) The wavenumber at which this 
occurs is 

2 2 2 kmax = Kz [-2/~o~o - do + (/~o + %)(/~oC% + do)l/z]/(Ndo) 2 

If the field is tangent to the interface (K Z = 0), the linear dispersion 
relation becomes 

k2 ( fl~ + doql)  (4.7) 

Independent of the sign of K~, a field parallel to the interface will tend to 
stabilize the interface at all wavenumbers. That both terms in oJk depend on 
ql indicates that the stabilization is due to a combination of the field effects 
in the bulk equation and the Gibbs-Thomson boundary condition. The 
behavior of the linear dispersion relation at small k is also different from 
the other cases. If Kz > 0, the field provides a length scale normal to the 
interface for the decay of 6c to its bulk value and ql ~ rKz[. For K = 0, the 
only length scale is the tangential length-scale Ikt and we find ql ~ rkl. 
However, for K~ = 0 but K x -r 0, the field provides a length scale tangential 
to the interface only. We find that, in the limit of small k, q~ = ([Kx[ k/2) 1/2 
and cok = -/~o IKx] 3/2 k3/2/(2Z x/2). (An analysis without the orientational 
dependence of the boundary condition but with the modification of the 
bulk equation yields co k ~ -k5/2. ~22)) Note that the behavior of co~ at small 
k indicates that a tangential field will strongly stabilize the interface relative 
to the case of a normal field, and therefore, at long wavelengths, the inter- 
face tangential to the external field will be the most stable configuration. 
The results of the above discussion are illustrated in Fig. 3, in which the 
dispersion relations are shown for various values and orientations of the 
external field. 

Our analysis can aid in understanding the results of previous numeri- 
cal simulations. It has been observed that, in simulations of the phase 
ordering process in a continuum model of a driven diffusive system, the 
domains are roughly triangular, with the base of the triangle being the 
interface stable to the surface current mechanism (E.  fi > 0) while the sharp 
vertex is the unstable interface (E.  fi < 0 ) .  (31) Similar shapes have also been 
observed in simulations of fingering in driven diffusive systems. (33) These 
latter simulations have been carried out for a lattice system in the limit of 
large driving field, so comparisons with weak-field continuum models (such 
as the one discussed in the present work) have to be made cautiously. 
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Fig. 3. The l inear  d ispers ion re la t ion  for several  values and  or ien ta t ions  of E for an  interface 

with its n o r m a l  in the + z  direction.  F o u r  values of E are shown ( E = - 0 . 0 1 L  E = 0 ,  

E = 0.01L and  E = 0.01~). The  pa ramete r s  from the " s t anda rd  mode l"  are used. The interface 

is s table  to pe r tu rba t ions  of w a v e n u m b e r  k if c% < 0 and  uns table  if o)k > 0. Fo r  small  k, 

~o k ~ - k  3 if E = 0. If the field is no rma l  to the interface, co k ~ k 2 if E z < 0 and  co k ~ - k  2 if 

E~ < 0. If  the field is t angent ia l  to the interface, c~ k ~ - k  3/2. 

Lattice effects will generally not be reproduced in a continuum description. 
However, it is worth noting that the shape of the strong-field fingers is 
consistent with the stability or instability as determined by the surface 
current (see Fig. 1). 

The surface instability can also explain the reason (with the above 
caution) that under periodic boundary conditions, one always observes 
interfaces oriented tangentially to the field. ~27 29) For periodic boundary 
conditions all interfaces must occur as kink-antikink pairs. If such a pair 
of interfaces has its normal in the field direction, the interface with E .  fi < 0 
will be unstable to the surface instability discussed above. On the other 
hand, for the kink-antikink pair the interface with E .  fi > 0 will be under- 
cooled. It will be unstable to the Mullins-Sekerka instability (24) at long 
wavelengths. For a very large system, this should dominate over the 
stabilizing effects of the surface current and hence the interface will also be 
unstable. Therefore our results indicate that a kink-antikink pair oriented 
normal to the field will always be unstable and cannot occur in the steady 
state, except for sufficiently small systems. (We note, however, that the 
maximal value of co k is much larger for the surface instability than for the 
Mullins-Sekerka instability for the kink-antikink pair, so that the unstable 
modes of the interface with E- fi < 0 will grow significantly long before the 
Mullins-Sekerka instability affects the other interface.) In light of these 
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observations, additional Monte Carlo and continuum model simulations 
appear to be warranted. 

For the steady-state interface oriented tangentially to the field, Monte 
Carlo simulations show the interfacial fluctuations are severely suppressed 
relative to the equilibrium interface, raising the possibility that, for the 
lattice model, the roughening temperature is raised to the nonequilibrium 
critical temperature. (34~ Figure 4 shows schematically how the combination 
of the bulk drift current and the "tilt" term act to enhance the relaxation 
of the interface (when it is tangent to the field). Consider the negative 
order-parameter bump in Fig. 4. To the left of the bump, the value of c 2 is 
lowered due to the modification of the Gibbs-Thomson boundary condi- 
tion. Due to the order-parameter dependent mobility, the drift (nondif- 
fusive) current is larger for smaller c 2, making the bulk current larger on 
the left of the bump. On the right of the bump the opposite is true; c 2 is 
raised, and the bulk current is lowered. The net effect is to deposit positive 
order parameter into the negative-order parameter bump, thereby filling 
the bump and relaxing the interface. An analogous argument holds for the 
positive order-parameter bump, which is also filled, and therefore these 
effects act to relax the interface. Intuitively this enhanced relaxation 
suggests a suppression of interracial roughness. However, to make a more 
definite statement requires the inclusion of noise and fluctuation effects, 
and connection with lattice models is subject to the usual cautions. 

Fig. 4. A shematic showing the effect of the modification of the Gibbs-Thomson boundary 
condition for an interface oriented approximately parallel to the field. The symbols are the 
same as in Fig. 1, with the exception that the smaller arrows are the bulk order-parameter 
current rather than the surface current. Due to the orientational term in the boundary condi- 
tion, the value of c 2 is smaller (larger) and therefore the current larger (smaller) where E" fi 
is negative (positive). The effect is to deposit c into the bump of the minus phase and pull 
positive c from a bump of the plus phase, thereby stabilizing the interface. 
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5. N U M E R I C A L  RESULTS 

We perform numerical simulations of the coarse-grained model to 
study the stability of the interface when it is approximately normal to the 
field. Equation (2.1) is integrated with the "standard model" chemical 
potential # = - c + e  3-V2c and mobility a = l - c  2. Periodic and 
antiperiodic boundary conditions in the field direction are considered. We 
find the orientation dependence of the stability agrees with our analysis of 
the surface-driven instability. 

A discrete version of Eq. (2.1) on an Nx  N square lattice with N =  100 
is treated here. A standard forward integration using an Euler scheme with 
a mesh size A x =  1 and time interval At=0.01 is used. We start with an 
approximately planar interface as our initial condition. To demonstrate the 
important stability features discussed in this paper, we need only study 
short times. In the figures for this section, we display integrations to time 
t = 500. 

To model a nonzero flux at the boundaries one must consider an open 
system with, for example, periodic or antiperiodic boundary conditions in 
the direction of the field. We first consider antiperiodic boundary condi- 
tions in the field direction, which is consistent with a single interface or 
kink. Periodic boundary conditions are always employed in the direction 
transverse to the field. For E = 0 ,  the interface given by Eq. (2.4) is 
absolutely stable. However, if the flat interface is slightly perturbed in a 
nonzero field, we observe, depending on the orientation of E, a stable inter- 
face if E" fi > 0 (Fig. 5a) and an unstable interface if E .  fi < 0 (Fig. 5b). (In 
each case IE] = 0.1.) The thick arrows in Fig. 5 indicate the motion of the 
interface in the two cases. Figure 5 also indicates with small arrows the 
incremental flux at each point in the lattice after subtracting off a gobally 
constant value equal to the flux at the boundaries. We observe that there 
is an accumulation of flux localized in the vicinity of the interface and 
directed along the interface. This incremental flux induced by E has been 
discussed in Sections 3 and 4 and is responsible for the stability properties 
of the interface. The interfacial profile along the central vertical line in 
Fig. 5 retains the qualitative features of Eq. (2.4). However, a comple te  
numerical analysis of the interracial boundary conditions discussed in 
Section 3 requires more extensive solutions. 

In Fig. 6, we present the results of our simulation for the evolution of 
a kink-antikink pair with periodic boundary conditions. The external field 
is again normal to the unperturbed interfaces. The order parameter varia- 
tion along the central line has been shown in Fig. 2. As discussed 
previously, the interface with E .  fi > 0 is undercooled. Hence, as argued in 
Section 3, the Mullins-Sekerka instability could act to destabilize the inter- 
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face having E .  fi > 0. The simulation shown in Fig. 6 is for a small system 
which effectively clamps the Mullins-Sekerka instability. Hence, in agree- 
ment with the antiperiodic case, the interfaces with E" fi > 0 and E .  fi < 0 
are stable and unstable, respectively, as indicated by the thicker arrows in 
Fig. 6. 

E . . . . . . . . . . . . .  C < 0  

: : : : : : : : : : : : : : : : : : : : :  

: : .  :C > : 0  : : : : :  : : :  

i i  ! i i i : i i :  c<oi 
: : : : : : : : : : : : : : : : : : : : : : :  

. . . . . . . . .  c. > 0 . . . . . . . . . .  

Fig. 5. Configurations obtained from a numerical simulation of Eq. (2.1) using antiperiodic 
boundary conditions. The normal  fi is defined as pointing into the "plus" phase. The small 
arrows indicate the direction of incremental order-parameter current. The thicker arrows 
indicate the motion of the interface. There is an enhanced current (relative to the bulk) at the 
interface. In agreement with our analysis, the effect of the enhanced surface current is to 
stabilize the interface with E - ~  > 0 (upper figure) and destabilizes the interface with E .  fi < 0 
(lower figure). 

822/70/5-6-6 
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c < O  

~E c > O  
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c < D  " " 

Fig. 6. A kink-antikink configuration obtained from a simulation of Eq. (2.1) using periodic 
boundary conditions. The symbols are the same as in Fig. 5. As shown by the thicker arrow, 
the orientational dependence of the interface stability is the same as that of Fig. 5, i.e., the 
interface is unstable if E . a < 0  (the upper interface) and stable if E ' f i>0  (the lower 
interface). 

F r o m  these examples, we conclude that  the stability properties of the 
interfaces are determined primarily by their orientation with respect to the 
external field. Furthermore,  the simulations reveal, in agreement with 
the analytic results of Section 3, that  a new instability can be driven by an 
accumulat ion of flux in the vicinity of the interface. 

6. S U M M A R Y  

We studied the dynamics of an interface between two coexisting solid 
phases driven out  of  equilibrium by an applied field, which th rough  the 
chosen boundary  conditions induces a flux. Starting from the coarse- 
grained level of the Cahn-Hi l l ia rd  equation, we showed that  the external 
field has two impor tan t  effects. First, it leads to an instability mechanism 
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localized to the vicinity of the interface. That is, in contrast with the more 
studied Mullins-Sekerka type instability, which involves differences in 
fluxes normal to the interface, the destabilization is due to flux along the 
interface itself. Second, the Gibbs-Thomson relation, which generally 
expresses a shift of the order parameter near an interface from its steady- 
state value, is modified, the external field producing a novel asymmetry in 
the shift. Each of these effects can determine the stability of the interface, 
depending on the orientation of the external field with respect to the 
interface. 

Using the derived macroscopic description of the interfacial dynamics, 
we performed a linear stability analysis for a flat interface. We found that, 
if the external field is normal to the interface, the effect of the surface 
current is dominant. For the field pointing into the "plus" phase, the inter- 
face is stabilized, while for the field pointing into the "minus" phase, the 
field has a destabilizing effect. This orientational dependence is opposite 
what is expected if the Mullins-Sekerka mechanism dominated, i.e., leading 
to an unstable interface separating two undercooled bulks (see Fig. 2). 
If the external field is tangent to the interface, the modification of the 
Gibbs-Thomson relation is important and interfacial fluctuations are 
suppressed. This suggests an increase in the roughening temperature. More 
specifically, we determined the dispersion relation at small wavenumber k 
to be co k ~  +k z, with the sign depending on the direction of the field 
normal to the interface, and c % ~ - k  3/2 if the field is tangent to the 
interface. These results are in agreement with Monte Carlo simulations of 
driven diffusive systems, (23'21'33'34) our numerical results expressed in Figs. 5 
and 6, and with previous efforts on phase ordering. (31'32) We are presently 
performing a more thorough numerical study using the modified Cahn- 
Hilliard equation to test these results further. (38) 

APPENDIX.  DERIVATION OF INTERFACIAL EQUATIONS 

In this Appendix we derive the interracial equations from the coarse- 
grained description using the method of matched asymptotic expan- 
sions. (15-17) We use the method of Pego, (16) who derived the interfacial 
equations for zero field from the Cahn-Hilliard equation. We restate the 
bulk model of Section 2. The equation determining the order parameter 
c(r, t) is (2.1), 

0t = V2/~(c) - E" Va(c) (AI) 
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where kt, the local (zero-field) chemical potential, is taken to be 

#(c) = #B(c) - 42V2c (A2) 

in which tto does not contain any gradients and 40 is a measure of the 
interfacial width. We assume Ising-like symmetry, so that tt B is an odd 
function of c and _+ Ccq are the equilibrium values of c. The order parameter 
current j is given by Eq. (2.3), 

j = -V,u(c) + a(c) E (A3) 

where a(c) is the order-parameter-dependent mobility, which is chosen to 
be a monotonically decreasing function of c 2. Without loss of generality we 
take O'(Ceq ) = 0. (This corresponds to subtracting a constant current and 
does not affect the dynamics.) In this discussion we assume that, far from 
the interface, c = _+Ccq + (9(4o), and hence #---(9(40) far from the interface. 
(This precludes macroscopic undercooling in the present discussion.) 

We treat 4o as a small parameter and expand # and c in powers of ~0, 

C = C  O j-  ~OCl + 42C2+ "'" 
(A4) 

Note that these expansions are not independent, since # is a function of c. 
The mobility a, order parameter current j, and normal velocity of the inter- 
face v are functions of c and can be expanded in the same manner. 

Time is rescaled as , =  4o t to extract the long-time behavior. The 
system is partitioned into bulk (outer) and interfacial (inner) regions. The 
interracial region is defined as a skin around the interface of thickness 
larger than (9(~0) but less than 
Differential equations for ci in 
and the solutions for c~ and #i 
boundary between the regions. 

For  the interracial (inner) 

the macroscopic lengths, which are (9(1). 
terms o f / ~  are obtained for each region 
are matched (to each order in ~o) at the 

region, we use the time-dependent cur- 
vilinear coordinates defined as follows. Let fi and g be the normal and 
tangent vectors at the interface point r(s) specified by the contour variable 
s. (For simplicity, we restrict the discussion to a one-dimensional interface 
in a two-dimensional bulk.) Then not too far from the interface a bulk 
point r can be represented by a pair (s, u), where r = r(s) + u~(s). For the 
inner expansion we rescale the normal distance to the interface as w = u/4o. 
Since u--, 1 is the macroscopic length scale, we must match the inner 
solution to the outer solution at 1 >> u >> ~o. In the limit of 40--*0 this 
corresponds to matching the outer solution to the interface to the inner 
solution at w large. Following Pego, (16) we may write G=gi(u, r, t) with 
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Vr~ i in the ~ direction. With this choice, O , c i = O t ~ i + ( O , u )  8 ,g i ,  and the 
dynamical equation (A1) in the inner region becomes 

v 1 X 

1 
- -  (E. a) 0w~(e) + ~ ( c ) -  (E. ~) G~(c) (AS) 

4o 

where the curvature ~r = - V .  fi is positive for a bump of the "plus" phase 
into the "minus" phase. The normal velocity v=  - ~ , u  is positive if the 
"minus" phase advances into the "plus" phase. The velocity is also 
expanded in powers of 4o; v = Vo + ~oV~ + (~(~o2). In terms of c, the chemical 
potential is (dropping all tildes in the remainder of the discussion) 

2 2 Zc)  = ~=(c) - ~,c + ~oW,~wc- G Gc 

]2B(Co ) 2 2 = - -Owc 1 + . . .  -- 0wOo + ~o[#~c 1 + Y{-C3wC0] (A6) 

where the prime indicates the derivative w.r.t, c evaluated at Co(W ). 
In the region far from the interface, we are interested in structures much 

larger than the interfacial width, so we use the unrescaled time-independent 
coordinate systems r. In the outer region the dynamical equation (A1) is 

~00~c = V2#(c) - E" Va(c) (A7) 

where # is given by Eq. (A2) and j by Eq. (A3). The outer solution #o~te~ 
is matched to the same order in the inner solution ~ . . . .  #~ , but due to the 
rescaling of u in the inner region, the normal derivative of the outer 
solution 8,#o=te~ is matched to the normal derivative at one order higher 
in the inner solution i . . . .  c~w#~+~. More generally, the matching condition is 

m o u t e r  rn i n n e r  0,#~ =8~/Q+m at the boundary between the outer and inner regions. 

A1.  Z e r o t h  O r d e r  

In the inner (interfacial) region the dynamical equation to lowest 
order in 4o (i.e., 4o 2) is 

2 0 = c~w/2 o (A8) 

or #o = ao + bow. The requirement that Po and Co match an outer solution 
at w>> 1 means that ~wCo vanishes at large w, #o must be finite, and, hence, 
bo = 0. Making the analogy with a classical particle in a potential, the only 
solution with c~wCo = 0 at large w is the planar interfacial profile. Therefore 
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a o also vanishes, Co is the zero-field planar interface solution, and tt o = 0 in 
the entire inner region. 

In the outer (bulk) region the lowest order dynamical equation is 

0 = V2#o - E" Vco (A9) 

The boundary condition far from the interface is/~o = 0 and, from the inner 
solution, #o = 0 at the interface. The only solution meeting these boundary 
conditions is t to=0,  Co = C~q in the "plus" phase and c o = - C e q  in the 
"minus" phase. 

A2. First Order  

is 
The dynamical equation for the inner region [Eq. (A5)] to order ~o 1 

_ _ / ) 0 O w e 0  ~__ - 2 ~w,/,/1 -- J~('6~w]/O- (E" U) 8wO'(Co) (A10) 

where 

~1 ~- ~IBCI - -  8 2 C 1  "t- O ~ S w C  0 (A l l )  

Integrating Eq. (A10) w.r.t, w, we find 

-VoCo = 8~.1~1 - (E.  ~) a( Co) + bl (A12) 

where we used the zeroth-order result #o = 0. We eliminate the even terms 
in Eq. (A12) by subtracting the expression evaluated for w ~ - ~  from its 
limiting value as w --, o% 

- [VoCo]~= - 2 % V o =  [SwUl]~ (A13) 

where [o]~ indicates the discontinuity across the interface. However, Vo 
must vanish since 8w/~ ~ at large w must be matched to the zeroth-order 
outer solution, 8, ,#o=0.  (This is consistent with no macroscopic under- 
cooling.) Returning to Eq. (A12) and using Vo = 0, a(Ceq ) -= 0, and 8wit I = 0 
at large w, we find that b l = 0. 

Integrating Eq. (A12) w.r.t, w and using the above results, we find 

#1 = al + (E.  fJ) f o  dw' a(Co) 
, 2 

= ].2BC 1 - -  8 w C  1 -I- ~ S w C  0 (A14) 
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To obtain al we multiply both sides of Eq. (A14) by ~?wc0 and integrate 
over the interface 

< [ dw <, + (W . f fo dW' ) 

=; dW~wCO(J~B--~2.)Cl-~- ~ f dW(~wCO)2 (A15) 

The function ~?wCo is the Goldstone mode corresponding to a translation of 
the interface. The first term on the RHS vanishes after integration by parts 
since the Goldstone mode is a zero eigenvector of the linear operator 

t 2 # 8 -  3,~ (8, 39). The last term on the LHS of Eq. (A15) also vanishes since 
the integrand is odd. Solving for a 1 gives 

F Ceq do 
al=_. j { =  

2Ceq 40 ~Z~o a':((" 
(A16) 

where )~=(Ou/OC)~q I is the zero-field susceptibility, do=ZI'/c2eq is the 
microscopic capilliary length, and F=4~dw(63wCo) 2 is the zero-field 
surface tension. Note that do is of order 4o. 

The dynamical equation in the outer expansion is 

0 =V2#~ - E- Vcr'c 1 (A17) 

In the outer region c = p z ,  where a ' = - T Q ,  with Q=--((~ff/OC)eq, SO 

that 

0 ~--- )~-- IV2Cl  ~__ QE" Vcl (A18) 

This is the equation describing the bulk dynamics of the order parameter 
field to first order in ~0. Equation (A18) implies that, at this order in 40, 
the quasistatic approximation 3,c = 0 in the bulk is valid. 

Equation (A18) must be solved with the Gibbs-Thomson boundary 
condition at the interface. This is obtained by evaluating the inner solution 
for #l, Eq. (A14), at w ~ _+oo, 

Ceq do ~ 
c1= Z/q = ~ - ~  JU_+ . K. f i  (A19) 

where K 1 = (zQE) 1 is a macroscopic length scale related to the external 
field and flo is a microscopic length scale of order ~0 defined by 

f 
oo 

~oQceq =- clu a(Co(U)) 
--oo 
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[If 0"(Ceq ) ~ 0, then more generally, ~oQZ- ~-o~ du (a(Co(U))- ff(deq)). ] 
The first term on the RHS of Eq. (A19) is even in u and is simply the equi- 
librium Gibbs-Thomson boundary condition indicating that the order 
parameter near the macroscopically sharp interface is shifted by an amount 
proportional to the curvature. The external field E produces an additional 
term which is asymmetric in u and therefore depends on whether the 
interface is approached from the "plus" or "minus" phase. As shown in 
Section 4, this new term in the boundary condition leads to an additional 
stabilizing mechanism when the field is tangential to the interface. This new 
mechanism dominates the stability in that ease. 

A3. Second Order 

To complete the first-order description in the bulk, we must obtain 
OwP2 in the inner solution evaluated at large w. The dynamical equation for 
the inner expansion [Eq. (A5)] to order 4 ~ is 

__Vl~wCO._~__ 2 __ 2 __ ~w].,12 ~f(~w].ll + (~s~lO (E"  U) ~w O" c I --  (E"  s) 020-(r (A20) 

The second-order chemical potential is related to ci by 

1 ,, 2+ /~c2  02c2+f~c1_02Co (A21) #2 = ~#Bcl 

Integrating Eq. (A20) over the interface and using the lower-order results, 
we obtain 

--2VlCeq = [C3w# 2 -  (E"  u) 6 ' C l ]  I -  S,~'[#I]  I 

~--- [r -- ( E ' u )  Gtc1] I -  o~("(E �9 u) f l~ 
~0 

^,. flOCeq = [aw#2- (E" u) a ' c l ] , -  ~ ( K  �9 u~ ~ (A22) 

where we use Eq (A19) for the discontinuity in #1 across the interface. We 
can recognize the physical significance of this by noticing that we can 
expand the current (in the inner solution) as j = ~ o l j _ 1 + j o + ~ o j ~  + --., 
where j _ l = - f i 0 w # o = 0 ,  jo=-fi~w#l+Ea(co), and j l = - f i ~ w p 2 -  
s~#l + Ea'c~. We identify Jl,,  = - ~ # 2  + (E. fi) a'c 1 and 

1 ~ 1 

To 
= ( E "  ~1) ,.i{" f l ~  = (K ^" Ceq/~~ 

4o �9 u) -~-~--o ar (A23) 
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Since V=~oVl+(9(~ 2) and [ ju]z=~o[ j l , , ]+(f l (~) ,  we can write the 
normal velocity as 

v = ~ [J.]z + oo dw O,js + (9(~ 2) 

l flo + C(~o2) (A24) 
---- 2Ceq [ j . ] / +  3(('(K" ~) 2Z 

In other words, in addition to the usual discontinuity in the normal 
current, there is also a contribution to the normal velocity due to the 
tangential derivative of the tangential current. 

A4. Kinetic Correct ions to Pz 

We can also use the method of matched asymptotic expansions to 
obtain higher-order corrections to the macroscopic boundary condition. At 
the next order the Gibbs-Thomson boundary condition has a contribution 
proportional to the normal velocity. Integrating Eq. (A20) twice w.r.t, w, 
we obtain 

~2 = - v l  dw' Co(W') + ~ dw' #~ - (E. fi) 

-~. 21 #BClr, 2 ..}_ [,,ltBC2 -- (~2wC 2 q_ , .~SwC 1 

dw' a'cl  + b2w + a2 

(A25) 

We need to obtain the value of a2 which will enter the Gibbs-Thomson 
boundary condition. To do so, we eliminate the c2 dependence by multiply- 
ing by the Goldstone mode OwCo (i.e., the zero eigenvector of #~ -02 )  and 
integrating across the interface. This procedure also eliminates all the odd 
terms in w in Eq. (A25). Using Eq. (A14) for #1, we find 

2Ceq a 2 = 2vl dw(ceq - Co) Co 

+ (E" a) dw OwCo dw'[a 'c l  + Wa(Co)] 
c o  

- o o d w ~ , ~ C o ~ I z B c l +  (A26) foo f l  tt 2 j~g/.~wC1 ) 

Equation (A25) contains linear divergences for large Iwl, These terms 
match C3,#lUter and must be subtracted off when obtaining the matching 
condition for #e in the outer expansion. We evaluate the "subtracted" #2 at 
large w. This leads to a very complicated boundary condition for c2 = #2)~ 
at the outer expansion, 
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)~ lC2=Ce Zt)l fO dw(clq--Cl)-}-daf" d w ' ( ] / 1 - # l ' + )  

-- (E" fi) fo• ~ dw'(a'cl + Qcl. +_ ) 

1 f ~ I~l~BCl--#gOwcl +~Ceq -~  dw~?wC ~ . 2 + (E" fi) dw' a'cl 

(A27) 

where the subscript _+ indicates that the expression is evaluated as 
one approaches the interface from the "plus" or "minus" phase and 
Q-- -(~?a/~C)~q. Therefore at (9(4 2) there is a kinetic contibution (the term 
proportional to vl) to the Gibbs-Thomson boundary condition. For E = 0, 
cl is an even function of u, #1 is independent of u, and the boundary 
condition simplifies to ~ 

)~ lc2= V1~~ dw(cZq-c 2) (A28) 
Ceq J0 

Hence, for E = 0, only the kinetic contribution survives at this order. 
The kinetic contribution may be important in the case where the bulk 

is supercooled by an amount larger than (9({o). For E = 0 the dynamical 
equations to first order in {o [Eqs. (A18), (A19), and (A24)] are analogous 
to the equations describing Hele-Shaw flow. (1'2) Such an analogy has also 
been noted between crystal growth and Hele-Shaw flow. ~4~ We find, 
however, that if the supercooling in the bulk is larger than (9({o), i.e., if 
there is a macroscopic supercooling, v0 will be nonzero and there will be 
a kinetic contribution to the boundary condition for #1. Therefore, even at 
first order in {o, the analogy with Hele-Shaw flow is not complete. 

A5. First Order Macroscopic Equations: Summary 

The equations describing the interfacial dynamics to first order in ~o 
are as follows: 

(i) The bulk dynamics is given by Eq. (A18), 

0 = Z 1 [-V2(~C q_ K.  V6c] (A29) 

where K = zQE, Q = - - ( r  Z - 1  -= (c3/~/0C)eq,  and 6c = cT Ceq. 
(ii) This equation must be solved with the boundary condition at 

the interface given by Eq. (A19), 

6c+_ = ~ do~l___ ~ fio(K'fi) (A30) 
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w h e r e  do=-Zf/C2eq, f is the zero-field surface tension, 
du [G(c0(u))- ~(coq)l. 

(iii) The interfacial velocity is given by Eq. (A24), 

and floQceq =_ 

1 fi)flo (A31) 
v = 2--~eq [J"] '  + • ( K .  2)~ 

The bulk current is j = -7 . -  l(V6c + Kbc). Combining this with Eqs. (A24) 
and (A19), we find for the normal velocity of the interface 

_ _ - -  ^~ ~0 v= [0,c5c],+ gf(K �9 u] ~- (A32) 
2)~Ceq zX 

where c~ 0 -  f lo-d0 is taken to be positive as in the "standard model." 
Equations (A29), (A30), and (A32) completely define the macroscopic 
dynamics to first order in ~0. 
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